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Abstract

The homogeneous, one—dimensional, non-linear thermoelasticity is
studied from the point of view of symmetries and similarity solutions.
Special cases of free energy function and conductivity function are
considered and the corresponding admitted symmetry group of trans-
formations are derived. Also, the similarity solutions, if any, for each
symmetry group are provided. Finally, the whole procedure is checked
by means of obtaining the reduction of the system of partial differ-
ential equations to a system of ordinary differential equations by the
insertion of the similarity solutions into them.

1 Introduction

This paper is the second part of a work concerning the symmetries of non-
linear, one-dimensional, dynamical thermoelasticity. In the first part [1] the
general non-homogeneous problem was concidered. In [2] some preliminary
results concerning the homogeneous case are presented. The present paper
intends to exhaust the homogeneous case.

By the term "non-linear”, we mean non-linearity coming into the system
through constitutive relations i.e., assuming a general non-linear (actually
more than quadratic) free energy function. On the other hand, this is not
the real full non-linear thermoelasticity because the linear relation between
heat conduction and temperature field i.e., the well-known Fourier law is
considered.



The concept of symmetry of a differential equation has been introduced
by Sophus Lie one hundred years ago. To find out the symmetries of a
differential equation means to find out the continuous group of transforma-
tions (actually they are Lie groups) under which the differential equation is
invariant. Having such symmetries, one can obtain new solutions from an
existing one and the so-called group-invariant solutions [3]; the well-known
similarity (or self-similar) solutions is nothing but a special case of group-
invariant solutions corresponding to the scaling group. Generally speaking,
the more symmetries of a differential equation we know the more we know
about the differential equation itself.

The fundamental ideas of S. Lie can be fruitfully coupled with concepts
coming from exterior calculus [4]. According to this the main idea is based
on Cartan’s work by which one can obtain a geometric description of a
partial differential equation in terms of closed ideals of exterior differential
forms. Next, one has to find out the so-called isovector fields which in turn
are defined to be the vector fields on the space of dependent and indepe-
dent variables, over which the Lie derivatives of Cartan’s exterior differential
forms remain invariant. These are nothing more but the infinitesimal gen-
erators [3] of the Lie group of transformations.

Most of the researchers of the area use the so—called determining equa-
tions i.e., an overdetermined system of linear PDEs which govern the com-
ponents of the isovector field, to obtain the symmetries of a differential
equation. This procedure to obtain symmetries relies directly on Lie groups
theory applied to the particular case of transformations group. We refer to
the books of Ibragimov [5], Olver [3] and Bluman and Cole [6] for further
information for the interested reader.

In Sect. 2, we summarize some results derived in [1] which are useful to
the present paper. In Sect. 3, we give the isovector field for the homogeneous
thermoelasticity and in Sect. 4, we examine special cases of symmetries
corresponding to various cases of free energy and conductivity functions.
Finally, in Sect. 5, we provide the similarity solutions arising from every
non—trivial symmetry.



2 Equations of Thermoelasticity and Some Previ-
ous Results

In the first part of this work [1] we examined the system of thermoelasticity
equations:
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where x(X,t) is the motion of the body, p = gradz is the gradient of
deformation, v = %}3 is the velocity, 8(X,t) is the absolute temperature
field, p(X) is the mass density, k¥ = k(X) is the conductivity function and
F = F(X,p,0) is the free energy function. By X is denoted the material
coordinate and by ¢ the time. The symmetries of this system are given by
the components of the isovector field given by the equations [1]

w?(t) = byt + bs,
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w(X)=aX + e,
(

X, t,z) = agzx + Bat + B4(X),
9) = ,u.29, (2)

where a = £(by — a2 — £) and ay, by, b3, Bs, p2, ¢, 1 are arbitrary constants
and (3, is an arbitrary function of X.
The free energy function F' should have the form

F(X,p,0) = f(X,p)8° + ¢(X,p), (3)

where the functions f and ¢ should fulfil the partial differential equations

(
(

(5a+2) f + (aX + c1) fx + (B (X) + pb) f, = 0, (4)
5a¢ + (aX + ¢1)éx + (B (X) + pb)¢, = 0, (5)

where d
b= —5(52—3@—%), p=pr, PB(X)=_Lsz). (6)



In the present paper we focus our attention on non-linear homogeneous
thermoelasticity the field equations of which can be written in the form of

balance equations as
3 BF 3([)0?))
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where py is the mass density which is now considered constant throughout
the body. The free energy function does not depend any more on space
variable X, namely, F = F(p,6). It is important to note that although
we assume homogeneity in material properties, we do not consider constant
thermal conductivity as one could expect. on the contrary, we continue to
consider non-homogeneity with respect to thermal properties because as it
will be apparent later accepting constant conductivity will cause cancellation
of every non-trivial symmetry. Also, it is worthwhile to remark that actually
we do not have a single system of partial differential equations but a class
of systems depending on the particular form of free energy function F.

The main step towards the symmetries of the system is to obtain the
isovector field, that is a vector field of the form
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To find out the isovector field (infinitesimal generator) of the system we
follow a method proposed by Suhubi [7]. This method was used by Suhubi
himeself to study the similarity solutions for plane waves in hyperelastic
materials [8). Also, the author of this article used the method to study
the non-homogeneous, one-dimensional problem of thermoelasticity. The
interested reader can find in [1] the formulation of the problem and all
technical details which are not repeated here. For the time being, the only
difference with [1] is that f as well as pp do not depend on the space variable
X, that means we adopt what is obtained in [1] for the isovector field, namely
egs (3.33):

w=wl(X), W?=u?(t), QU =0NX,tzx), OF=0%(X,t06).

Furthermore, we have to adopt equations (3.34), (3.35), (3.36) and (3.39)
of [1] provided that all partial derivatives with respect to X are taken zero.
An elaboration of these equations in a manner analogous to [1], will give us
the following equations:
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Moreover, we obtain straightforwardly from eq. (3.34) and (3.35) of [1],
some information concerning the components of the isovector field, namely
the relations:

oo _ o 1. &

2 =% a3 axae %
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== 0, T 5(—[(Jrc /)W +wl). (16)

Next, a detailed elaboration of these equations (see Appendix) will give
the following information concerning the general form of isovector field, i.e.,
the symmetries of eqs. (7)-(8) as well as some constraints on the general
form of F' and k. Hence the isovector field will take the form:

WHX) =1 X + ¢,

W2 (t) = byt® + bot + b3,

QNX,t,z) = btz + asx + B1tX + Bot + B3 X + B,

Q2(t,0) = —4b1t0 + 19, (17)



where ¢1, ¢o, b1, b2, b3, as, 51, B2, B3, B4, 141 are arbitrary conctants, thus for
the time being, we have obtained a ll-parameter group of infinitesomal
transformations. It is important to warn the reader that the parameters in
(17) are not related necessarily with the corresponding ones of (2). Further-
more, it is noted that the number of the parameters will reduce as it will be
apparent in next section.

The free energy function is constrained to have the form

F(p,6) = f(p)6* + ¢(p), (18)

where f and ¢ are arbitrary functions and the conductivity function should
fulfil the equations

(k' /k)wt = ¢, (19)
where ¢ is an arbitrary constant and
; : . ()2 1
(k /k)w! + 3w? — 2w + aa—g - 22% =i, (20)

3 The Isovector Field

In this section, after an exchausting elaboration of egs (11)—(20), we will
give the main result, that is the isovector field for homogeneous thermoe-
lasticity. The way we follow to elaborate them demands that equations
(11)—(15) admit isovector field (17). This will result in new equations to
which functions f and ¢ should obey, which in turn will provide new rela-
tionships for the parameters and the isovector itself. Before we apply this
procedure, we insert (17) into relationship (20) to obtain

c= —3bs + 2¢; — 1 + 2as. (21)
Next, inserting isovector field (17) into eq. (11) we get

(—c1 + 2(2byt + by) — (b1t + ag) + (—4byt + p1)26f, +
(—4b1t + p1)20fp + (61t + B3 — pe1 + p(brt + a2)26f, = 0,

from which we obtain

(—c1 +2by —ag + 2m) fp + (B3 —p(c1 — a2)) fop = 0, (22)
—5b1fp + (B1 + pb1) fop = 0. (23)



Doing the same with eq. (12) will give nothing because, provided egs. (17),
it (eq. (12)) is fulfilled identically.
Equation (13) with the help of relationship (21) will give

(4bg — 5cy + 21 —4dag) f + (B3 — ple1 — ag)) fp = 0, (24)
—4by f + (B1 + pb1) fp = 0. (25)

The same procedure applied on eq. (14) will give eq. (25) too.
Following the same line of argument, eq. (15) in turn will become
O [—4b1 fpp + (81 + Pb1) Fopp) + t{4b1000p + (B1 + Pb1) Fopp] +
6[(—2c1 + 263 + 211) fpp + [B3 — p(c1 — a2)] fopp] +
[(—2¢1 + 2b2)pp + [B3 — Pc1 — a2)]dppp] = 0,

from which we obtain

(_201 + 2by + Qﬂl)fpp + [183 - p(cl - aZ)]fPPP =0, (26)
—4b1 fpp + (1 + Pby1) fopp = 0, (27)

4b1¢pp -+ (JBI = pbl)fppp =0, (28)

(=2¢1 + 2b2)dpp + [B3 — p(c1 — a2)]dppp = 0. (29)

The last one of the equations we treat, namely eq. (16), does not have any
interest because it provides eqs. (22)—(23) which we have already taken
from eq. (11). To clear up the situation we remark that all the equations
(22)—(27) concern function f, so they should be valid simoultaneously. De-
manding this we can obtain new relationships between the parameters, which
will lead to the reduction of parameters number that is the modification of
the isovector field itself.

It is easy for one to see that equations (22), (23) and (26), (27) respec-
tively are compatible, by means that the former provides the latter by a
simple derivation. Hence, we treat only egs. (22), (23) which in turn should
be compatible to egs. (24)—(25). Differentiating eq. (25) we take

=3b1fp + (B1 + pb1) fp, = 0. (30)
Comparing this with eq. (23), we obtain
by =0, (31)

and
/1 =0, or f constant. (32)



Obviously, choosing f to be constant, we conclude a free energy function of
the form
F(p,0) = X\6? + ¢(p), )\ constant

which does not provide coupled thermoelasticity, hence we proceed adopting
the first choice, i.e.,
B1=0 : (33)

Differentiating now eq. (24), we obtain

(4by — 6c; + 23 — 3ag) fp + (B3 — plc1 — @2)) fpp = 0,

which after comparison with eq. (22) will give
2
e = 3(52 — az). (34)

After obtaining the relationships (31), (33) and (34) betwwen the parame-
ters, it remains a unique differential equation that f should fulfil

(4b2 + p1 — ag)f + (B5 — £(262 = Ta)) f, = 0. (35)

The same is true for function ¢. Inserting egs. (30), (32) and (33) into egs.
(28) and (29), the former is fulfilled identically and the latter takes the form

4

= (22 — 702)) gy = 0. (36)

%(352 + 2a3)dpp + (B3 —
It is now apparent that the only meaningful choice regarding proposition (32)
is B1 = 0. Otherwise, we will necessarily conclude that ¢ = constant which
does not make any sense for thermoelasticity. Actually, there will rise a free
energy function depending only on temparature field 4, thus appropriate for
a linear heat conduction theory for rigid media. °
Let us return to the differential equation (19) governing the behavior of
the conductivity function k. We recall this equation as it is

(k /) =, (37)

noting that ¢ is not any more an arbitrary constant, but it is linked with
the parameters of the symmetry group through the relationship
11 6
c= —‘5—62 4 5% — B (38)
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Equation (38) directly rises from eqgs. (21) and (34).
We are passing now to the isovector field in which we enter all information
about the parameters, inserting eqgs. (31), (33) and (34) into eq. (17)

2
w(X) = g(bz —a)X + ¢y,

wQ(t) = bat + b3,
ONX,t,2) = apz + Bat + B3.X + Bu,
02(1.0) = a6, (39)

Thus, we finally obtain a 8-parameter group of transformations which we
will examine in detail in the next section. For the time being, summarizing
our main conclusion we can claim:

The symmetry group admitted by the system of one-dimensional, non-linear,
homogeneous thermoelasticity (7), (8), is given by (89) provided that the free
energy function is of the form

F(p,6) = f(p)6* + ¢(p), (40)

where the functions f and ¢ fulfil the differential equations (35) and (36), re-
spectively and the heat conductivity function k is governed by the differential
equation (36) - 37).

4 Special Cases of Symmetries

The results presented in last section continue to be so general that they can
not let us scrutinize particular cases of probably practical interest. This is
due to the fact that our main equations (7) and (8) are not a sole system;
actually they make up a class of equations, depended upon free energy func-
tion F'. Hence, for every choice of F' we take a seperate member of the class.
To talk about symmetries one must first talk about the form of function F.
This is already apparent due to the fact that our main result on admissi-
ble symmetries (39) depends on the class of functions F having the form
(40). To proceed further one need to have particular F, or to put further
constraints on the free energy function. This is exactly our next step.



4.1 The funcion f is arbitrary

Letting full arbitrariness to f means the differential equation (35) is valid
for every f, hence the coefficients of the equation should be

7 5
/83 = 0: b2 = 5025 H1 = ‘_’Q‘GQ. (41)

After eqs. (41), the isovector field (39) becomes
w(X) = asX + ¢y,
W2(2) = ga2t+ bs,
O} (t,z) = agz + Bat + b,
02(9) = _gage (42)

and the differential equations for ¢ and k become

gg?ia%ﬁpp =0=¢pp =0, for aa#0

and
(k' [k)w! = —day.

Hence we obtain
E(X) = (aa X + Cg)_4, o(p) = ¢1p + P2, (43)

where ¢y, ¢1 and ¢3 are arbitrary constants. Hence, for the case under study
our initial system (7)—(8) is constrained to have the form

0’z od &z
f 2_ ! e - =
P 100 &z o0 gt OB
H(X) g + K@) 55 + 2/ (0)0%; + 21 ()05 = 0. (45)

We summarize what we have found for this particular case in the following
statement:
If the differential equations ({4)—(45) admit the symmetries given by isovec-
tor field (42), for arbitrary f then the function k will be necessarily of the
form (43a).

Looking at the isovector field (42) we can recognize that the parameter ay
gives the scaling (symmetry) and ¢, b3 and (34 are related with translations

10



with respect to X, ¢ and z, respectively. It is worthwhile to further examine
the symmetry of scalings, thus toset ap #0 and ey = b3 =B =6; =0. In
other words we examine the particular infinitesimal generator

& 7.9 8 5.0
V=X—+ + g = 2050,

=
X 2 ot
or the particular Lie group of finite transformations of scaloing type
X=X "= eget, =gy, #= e3¢d. (46)

The previous analysis secures that the transformation group (46) is ad-
mitted by PDE (44)—(45) provided the conductivity function k is of the
particular form

EX) =X (47)

4.2 The function ¢ is arbtrirary

We let now eq. (36) be valid for every ¢ which results

2 7
by = —302, by = 592, B3 =0. (48)

Relations (48) make sense only if as = by = 0. Hence the isovector field (39)
becomes

wH(X) = e,

w(t) = bs,

Ql(ta CL‘) = ﬁ?t g 164:

0%(9) = 116 (49)
and eq. (35) takes the form

2u1 f=0.

If we want to keep the symmetry related to the parameter u;, we must
necessarily consider f = 0, which in turn means that

F=F(p)=¢(p), ¢ arbitrary,

which, certainly, does not lead to any kind of thermoelasticity. In order to
have thermoelasticity, we must put p; = 0, hence f is an arbitrary function

11



and the isovector field becomes

1

Ww" = Cag,

w? = b,

Ql(t) = ﬂ?t + ﬁ41

Q=0 : (50)

and the free energy funcion will take the form

F(p,0) = f(p)6* + ¢(p), (51)

where f and ¢ are arbitrary functions.

We examine now the specific symmetry corresponding to the parameter
B2 # 0, which arises within the case 4.1 as well. (It is worthwhile to examine
whether the case 4.1 for 8 # 0 will give us the arbitrariness of ¢ which we
enjoy in the present case). In other words we discuss about the symmetry

Xt=X, th=t, a¥=2+t " =0. (52)
Recalling now that equation k(X) should obey
(k' /k)w' = —day,

it is easy to conclude that &' = 0, thus the function k(X) is becoming a
simple constant. After that the field equations of thermoelasticity (i.e., egs.
(7)—(8) will take the form:

2 0o A%z
" 2 /" ! el il g
[ 0)6° + ¢" (D)l 553 + 27 (0)0 5% — Pogm =0, (53)
0%z 06 T

Concluding, we can claim that the symmetry group given by egs. (52) is
the unique symmetry that is admitted by full homogeneous (k, py constants)
non-linear thermoelastic materials governed by egs. (58)—(54).

4.3 The function k is arbitrary

In order the function & to be an arbitrary one, i.e., every function & to satisfy
the differential equation (37), we must put

w1 =0, ¢=0, (55)



from which we conclude straightforwordly
by =az, c2=0. (56)
Furthermore, in virtue of eq. (38) we obtain
p1 = —az. , (57)
So, after egs. (56)—(57) we obtain for the comonents of the isovector field:
W' =0,
w?(t) = ast + b,

QYX,t,2) = agx + Fat + B3X + Ba,
Q2(8) = —ayh. (58)

Coming back now, to egs. (35)—(36) which for the case under study they
take the specific form

2a2f — (B3 + pazg) fp =0,
2a2¢pp + (ﬁS +pa'2)¢ppp = 0. (59)

After that, the field equations (7)-(8) for the four-parameter symmetry
group (58) take the form

I " 62
[ ()% + ¢ (p)] 5 X2 +2f (p)9 poé =0, (60)
Lo OO o924 & x
k(X)aX+k(X)aX2+2f(p)9—+2f p)e??axat:ﬂ. (61)

The most interesting symmetry for the case under discussion seems to
be the corresponding one to the parameter as:

0 0 0 0
V= ﬁ-+t§+$£—96—9,

or in the form of a transformation group
X*=X, t'=¢et a*=¢z, 0 =e*0. (62)

For this particular symmetry, the differential equations (59)—(60) take the
form

2f ~ply =0,

13



Thus the functions f and ¢ should have the form

flp) =Cip®, ¢(p) = Calnp+ C3p+Cy, (64)

where Cq,Cs,C3 and Cy are arbitrary constants.

5 Similarity Solutions

The next question is whether the symmetries we have found in last section,
give any of the so-called group invariant solutions. We remind here that
an invariant solution for a group of transformations admitted by the field
equations, is nothing but a solution of the field equations which moreover is
invariant under this group. The well-known similarity solutions are invariant
solutions corresponding to the particular case of a scaling group. That means
that a solution (z,6) of the field equations (7)—(8) is an invariant one, for
a given symmetry in the form of eq. (9), with w? # 0,i = 1,2, if they fulfil
the differential equations

W . 1
6,X-|- v Q-
V)
wlg% + w2% — 02 (65)

So, we have to check all symmetries deriving in last section under this re-
quirement
e Symmetry given by egs. (46).
In this case the PDEs (65) take the form
Oz 7 0x

X ot ater =2, (66)

80 7.00 5
Koz + gtae = —20: (67)

Their solutions will be

o(X,8) = u(§)X, 0(z,8)=v(€)X %, (68)

where £ = X +~% is the similarity variable. Thus the function given by egs.
(68) will be the similarity solution of field equations (44)—(45). In order to
check this, we have to carry out some calculations:

p= 2% — () Do X +ule) =/ (€ X +ule) =

14



p=&u'(§) + u(§). (69)

In the same manner we obtain

2 2

g = () + (), (10)

® = -luert, - (71)

4 1 1

L= i ”(s)gst—— wiger, 72
62 " 2,— 4 ' -1

xXaE —?U ©er - U (O™, (73)

2 =v(gext - Juiext, (74)
26 9

= (@8 — 5/ (e + Zu(g)x3, (75)
) 2

% = —5’01(5)8_1- (76)

Substituting now eqs. (47) and (67)—(76) into eqgs. (44)—(45), we obtain
F(PYR (280 + ") + ' (p) (260! —50°) = pol g5 %0 + €)= 0, (77)

7 4 9
C(e%" — 96 + v-f-'t})—;ff(p)givvf—% (p) 2(5_ "+2§2u) 0. (78)

It is worthwhile to note that the above system consists of highly non-linear
but ordinary differential equations as we expected to. This is an indirect
confirmation that all the previous analysis was carried out correctly.

e Symmetry given by egs. (62)

In this case, egs. (65) will take the form

6‘x 36

= =Y 7Y

Hence, the similarity solutions corresponding to the symmetry (62) must be
of the form
z(X,t) = u(X)t, 6(z,t) = v(X)t71, (80)

where u and v are arbitrary functions of X. To be sure that eqs. (80) are
indeed similarity solutions we must check whether they reduce the number
of the indepedent variableds of the system (60)—(61). Actually, we will

15



check whether or not, egs. (80) will transform the aforementioned system
to a system of ordinary differential equations. Indeed, inserting eqs. (64)
into PDEs (60)—(61) we obtain

Pz oz 08 Or ._s 0%z %z
2 Rt Tl o Rl SRS 5. S
O gxz + 20z x ~Clax) axr e = (81)
P a0 %0 08, 0z 9 02 ox 0%z
k(X)6X+k(X)5k—§+C‘ Gat(é)X) + 2C10 X 5X51 =, (82)
After that, we carry out the following calculations
oz 32 o or
%z 0%z §
and a0 %0 06
=i OV -1 %Y _ iy
SE=VX, S =X, =X (84)

Thus, in our last step we have just to insert eqs. (83)-(84) into egs. (81)-
(82) to obtain the following system of ordinary differential equations

C12%u" 4 2C1w'd — Cou'u” = 0, (85)
E (X)W + k(z)v" — Cro*u + 2C1v%u" = 0. (86)
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A Appendix: The Derivation of Egs. (17)—(20)

We give here the technical details for the derivation of egs.(17)—(20). Sum-
marizing the information about isovector field at hand, namely equations
(16), we can write

W2 (t) = byt? + bat + bs,
QUX,t,z) = (it + ag)z + B(X, 1),
O2(X,t,6) = [MX) + ()6 + (X, 1), (87)

where by, b, b3 and as are arbitrary constants, 3, ~, p are arbitrary functions
and

AX) = % / K(X)dX

If we differentiate now egs. (10) and (11) with respect to X and #
respectively and after that subtract them from each other we can obtain by
virtue of eqs. (16), for Fpg # 0

"

W =0=3w =X +e. (88)

Hence, up to this point we have proved the form of the first two components
of the isovector field (17).

Differentiating eq. (14) with respect to 6, multiplying by ¢, and then
differentiating (15) with respect to p and finally subtracting from each other
we take

r . 1 Qz Bﬂl
[[(6 /)t + 82 — 20 + 2%? —~ za—m]e ~ Q2] 0Fppp = 0.
Thus for Fp,p, # 0, we obtain
. ; 2 1
(K /) + 302 — 2 + ‘% — 2%% =0, (89)

which is the required eq. (20).
In what follows we elaborate carefully eq. (89); first we differentiate with
respect to t and easily obtain

p(t) = —4bit + pa, (90)

where pq is an arbitrary constant. Next differentiating with respect to X,

we obtain )
(k /) =c. (91)
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Therefore, eq. (19) has derived. Moreover, with the aid of eq. (16) it gives

8%Q?

X080 (92)

Inserting now eq. (89) into eq. (12) it becomes comparable to eq. (10).
After proper differentiation this comparison results :

3292
—z =0 (93)

Coming back to egs. (10) and (11), differentiating them twice with respect
to ¢, we can obtain

it a0t

axee =% B =0 (84)
In the same line of argument, with the aid of eq. (89) we can make egs.

(10) and (15) to be comparable with each other. Thus for Fy, # 0 we obtain

—85-—9 =0= 0%(t,0) = (—4bit + )0 (95)

The last step was obtained by virtue of eq. (92). After the last relation, we
come back to egs. (10) and (11) once more, differentiate with respect to X
and ¢ respectively to obtain

2! Q!
axz =" m
With egs. (94) and (96) at hand the function 3 takes the form

Il (96)

B(X,t) = p1tX + Bot + B3 X + s, (97)

where 81, 52,83 and 34 are arbitrary constants. After egs. (95) and (97)
the form of the remaining components of the isovector field (17) has been
proved too.

Last, we apply the same way of elaboration to eqs. (13) and (15); that is
we differentiate with respect to 6 the former and with respect to ¢ the latter
and substitute each other. the result of this manipulation is

0Fpg — Fy = 0= F(p,0) = f(p)6* + ¢(p), (98)

where f and ¢ are arbitrary functions. Hence, eq. (18) has derived, too.
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